合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 細(xì)胞膜表面張力調(diào)控方法與步驟
> 液滴中心液態(tài)區(qū)表面張力法研究PTFE膠粒與NaCl混合液滴圖案形成原理
> 觸感點(diǎn)陣文字盲人印刷時(shí),如何控制UV油墨表面張力流平時(shí)間
> 3種常見(jiàn)醇類(lèi)燃料甲醇、乙醇、正丁醇噴霧特性與表面張力的關(guān)系(一)
> 5μL樣品測(cè)表面張力?超微量天平如何破解納米材料研發(fā)困局
> 臨界表面張力、噴霧距離等對(duì)成熟期煙草農(nóng)藥?kù)F滴附著關(guān)鍵指標(biāo)的影響——摘要、材料與方法
> 寶寶出生的越早,肺表面活性物質(zhì)越少,肺泡缺乏表面張力
> 數(shù)碼印花活性墨水品控鑒定從哪些方面著手?
> N-十四酰基天冬氨酸及其鈉鹽合成路線、制備、表面張力等性能測(cè)定(一)
> 界面張力作用下?泥質(zhì)鉆渣泥化黏附機(jī)理分析
推薦新聞Info
-
> 不同相對(duì)兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對(duì)比(三)
> 不同相對(duì)兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對(duì)比(二)
> 不同相對(duì)兩親面積的Janus顆粒在油氣表面性質(zhì)和泡沫性能對(duì)比(一)
> 氣凝膠的合成方法及干燥方法一覽
> 表面活性劑對(duì)?納米碳纖維CNFs在水性體系中分散性的影響(二)
> 表面活性劑對(duì)?納米碳纖維CNFs在水性體系中分散性的影響(一)
> 納米熔鹽形成機(jī)理、表面張力測(cè)定及影響因素研究(三)
> 納米熔鹽形成機(jī)理、表面張力測(cè)定及影響因素研究(二)
> 納米熔鹽形成機(jī)理、表面張力測(cè)定及影響因素研究(一)
> ?《Nature》論文致謝欄常客:超微量天平的生物膜研究顛覆性應(yīng)用
基于懸滴法測(cè)量硅油黏滯液體的表面張力系數(shù)——結(jié)果與討論、結(jié)論
來(lái)源:大學(xué)物理實(shí)驗(yàn) 瀏覽 779 次 發(fā)布時(shí)間:2025-02-11
2實(shí)驗(yàn)部分
實(shí)驗(yàn)采用SL200A型接觸角儀來(lái)產(chǎn)生液滴,獲取液滴圖像。該儀器的主機(jī)如圖2所示,主要組成部件為:光源控制部件(可調(diào)亮度LED光源)、CCD鏡頭(75 mm焦距,25幀/秒)、進(jìn)樣器控制部件(可升降12.5 mm,0.01 mm微距)、樣品臺(tái)部件(樣品臺(tái)面50×50 mm)、圖像采集卡(25幀/秒)、手動(dòng)控制微量進(jìn)樣器(10、25、50μL)。實(shí)驗(yàn)采用表面張力與接觸角分析系統(tǒng)的CAST2.0軟件控制拍攝過(guò)程。采用連續(xù)拍攝方式,圖像采集速率為25幀/s,連拍100幀,獲取液滴圖像。實(shí)驗(yàn)樣品為黏度系數(shù)為50 mm2/s、100 mm2/s、350 mm2/s、500 mm2/s的硅油,其中黏度系數(shù)為50 mm2/s、100 mm2/s的硅油密度σ為965 kg/m3,黏度系數(shù)為350 mm2/s、500 mm2/s的硅油密度σ為970 kg/m3[14]。
圖2 SL200A型接觸角儀主機(jī)
3結(jié)果與討論
3.1液滴的形成與選擇
由于液滴形態(tài)是影響表面張力測(cè)量準(zhǔn)確度的重要因素,液滴的控制與選擇是提高測(cè)量準(zhǔn)確度的關(guān)鍵步驟。圖3為采用10μL微量進(jìn)樣器緩慢增加液體量時(shí)的液滴形態(tài)照片,樣品為黏度系數(shù)50 mm2/s的硅油,其中圖3(a)為液滴剛形成時(shí)的形態(tài)圖像,圖3(d)為液滴下落前平衡時(shí)的形態(tài)圖像,圖3(e)為液滴下落時(shí)的形態(tài)圖像。根據(jù)照片得到懸停液滴的形狀因子S=ds/de分別為:(a)0.746;(b)0.744;(c)0.744;(d)0.739,因此,隨著液滴中液體量的增加,懸滴從近球形變化為橢球形,形狀因子稍稍減小。根據(jù)式(3)計(jì)算得到不同液滴形態(tài)下的硅油表面張力系數(shù),分別為:(a)0.019 1 N/m、(b)0.019 2 N/m、(c)0.019 5 N/m、(d)0.019 7 N/m。由此可見(jiàn),對(duì)于同一種液體,當(dāng)液滴處于不同形態(tài)時(shí),計(jì)算得到的表面張力系數(shù)存在差別。根據(jù)文獻(xiàn)[14],黏度系數(shù)50 mm2/s的線性結(jié)構(gòu)甲基硅油的表面張力系數(shù)為0.020 5 N/m,因此,對(duì)于不同形態(tài)的液滴,測(cè)量的相對(duì)誤差分別為:(a)6.8%;(b)6.3%;(c)4.9%;(d)3.9%。結(jié)果表明,當(dāng)液滴達(dá)到下落前的臨界狀態(tài)時(shí),測(cè)量的相對(duì)誤差最小。實(shí)驗(yàn)還采用了25、50μL的微量進(jìn)樣器來(lái)產(chǎn)生液滴,發(fā)現(xiàn)由于每次液體量的增加較多,表面張力和重力相平衡的臨界狀態(tài)較難控制,難于形成較好的懸滴。因此,采用懸滴法測(cè)量液體表面張力系數(shù)時(shí),通過(guò)小容量(例如10μL)的微量進(jìn)樣器控制液滴形態(tài),選擇液滴下落前平衡時(shí)的形態(tài)圖像,可以減小測(cè)量的相對(duì)誤差,獲得接近真實(shí)值的表面張力系數(shù)。
圖3液滴從形成到下落瞬間的形態(tài)照片
3.2硅油黏滯性對(duì)表面張力的影響
根據(jù)液滴的形成過(guò)程,實(shí)驗(yàn)選用液滴下落前的臨界懸停狀態(tài)圖像,進(jìn)一步測(cè)量了不同黏滯性硅油的表面張力系數(shù),圖4為黏度系數(shù)為50、100、350和500 mm2/s硅油樣品的懸滴形態(tài)照片。
(a)50 mm2/s(b)100 mm2/s(c)350 mm2/s(d)500 mm2/s
根據(jù)照片得到懸停液滴的形狀因子S分別為:(a)0.746;(b)0.757;(c)0.778;(d)0.789,由式(3)計(jì)算得到硅油樣品的表面張力系數(shù)分別為:(a)0.019 7 N/m;(b)0.019 9 N/m;(c)0.020 1 N/m;(d)0.021 3 N/m。與線性結(jié)構(gòu)甲基硅油的表面張力系數(shù)(50 mm2/s的硅油為0.020 5 N/m,350 mm2/s的硅油為0.021 1 N/m[14])相比較,測(cè)量的相對(duì)誤差分別為3.9%、4.7%,接近懸滴法測(cè)量液體表面張力系數(shù)所能達(dá)到的最大精度(相對(duì)誤差為2%~3%)[13]。根據(jù)測(cè)量結(jié)果,得到硅油表面張力系數(shù)隨其黏滯系數(shù)的變化關(guān)系,如圖5所示。可見(jiàn)硅油表面張力系數(shù)隨著黏度系數(shù)的增加稍稍增大,硅油黏滯性對(duì)其表面張力稍有影響。這種影響與液體內(nèi)部分子之間的相互作用有關(guān)。隨著液體黏滯性增加,液體的流動(dòng)性變差,液體表面對(duì)液體分子的約束作用增強(qiáng),導(dǎo)致其表面張力增大。
黏滯系數(shù)/(mm2·s-1)
4結(jié)論
本實(shí)驗(yàn)采用懸滴法開(kāi)展了硅油黏滯液體表面張力的測(cè)量技術(shù)探究。通過(guò)微量進(jìn)樣控制技術(shù),并采用動(dòng)態(tài)過(guò)程的連續(xù)圖像采集方法,獲得了不同液體量時(shí)的液滴形態(tài)變化,利用表面張力和重力相平衡的臨界狀態(tài)液滴照片,測(cè)量了不同黏滯性硅油的表面張力系數(shù),測(cè)量數(shù)據(jù)的相對(duì)誤差為4%左右,接近懸滴法測(cè)量液體表面張力系數(shù)的最大精度。在大學(xué)物理實(shí)驗(yàn)的拉脫法實(shí)驗(yàn)基礎(chǔ)上,進(jìn)一步開(kāi)展黏滯液體表面張力的懸滴法測(cè)量探究,對(duì)于拓展大學(xué)生的創(chuàng)新實(shí)驗(yàn)?zāi)芰Γ哂兄匾饔谩?