合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 氟碳-碳?xì)浔砻婊钚詣?fù)配體系表面張力變化規(guī)律與影響因素
> 引氣劑的界面活性作用與使用注意事項(xiàng)
> 勝利油田常規(guī)和親油性石油磺酸鹽組成、色譜、質(zhì)譜、界面張力測定(二)
> 低表面張力、減縮型聚羧酸減水劑制備步驟
> 微量天平與分析天平有什么區(qū)別?
> 軟物質(zhì)褶皺形成機(jī)制新發(fā)現(xiàn):液體浸潤、表面張力與接觸線釘扎效應(yīng)
> 改性環(huán)氧樹脂乳液型碳纖維上漿劑制備、表面張力、黏度等性能測試(一)
> 雙子型起泡劑ULT-1的分子結(jié)構(gòu)式、表面張力、抗溫/抗鹽性能及煤樣潤濕性變化——結(jié)果與討論、結(jié)論
> 高沸點(diǎn)表面活性劑對納米LiBr溶液表面張力沸騰溫度的影響(下)
> 新水性丙烯酸乳液原膠(水性壓敏膠)配方、制備步驟及優(yōu)勢
推薦新聞Info
-
> 氣凝膠的合成方法及干燥方法一覽
> 表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(二)
> 表面活性劑對?納米碳纖維CNFs在水性體系中分散性的影響(一)
> 納米熔鹽形成機(jī)理、表面張力測定及影響因素研究(三)
> 納米熔鹽形成機(jī)理、表面張力測定及影響因素研究(二)
> 納米熔鹽形成機(jī)理、表面張力測定及影響因素研究(一)
> ?《Nature》論文致謝欄常客:超微量天平的生物膜研究顛覆性應(yīng)用
> Na2CO3溶液與模擬油反應(yīng)不同時(shí)間后產(chǎn)物的界面張力、剪切黏度(二)
> Na2CO3溶液與模擬油反應(yīng)不同時(shí)間后產(chǎn)物的界面張力、剪切黏度(一)
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
納米熔鹽形成機(jī)理、表面張力測定及影響因素研究(二)
來源:儲能材料與器件 瀏覽 34 次 發(fā)布時(shí)間:2025-09-09
2結(jié)果與討論
為了減少熔融鹽內(nèi)部自然對流對測量結(jié)果的影響,密度及表面張力實(shí)驗(yàn)均在降溫的過程中進(jìn)行測量。熔融鹽冷卻速率小于2K/min。
2.1實(shí)驗(yàn)臺精度驗(yàn)證
2.1.1密度實(shí)驗(yàn)臺精度驗(yàn)證
采用阿基米德法測量納米熔鹽液體密度時(shí),采用已知體積的316L不銹鋼重錘作為密度探頭,在測量納米熔鹽的密度之前,先用已知密度的液體對密度探頭進(jìn)行標(biāo)定,可由式(3)對密度探頭的體積進(jìn)行計(jì)算。
本實(shí)驗(yàn)采用去離子水作為已知液體,由式(3)得到重錘的體積為2.4388~cm^3。對重錘體積進(jìn)行標(biāo)定后,通過對KNO3、NaNO3的密度進(jìn)行測量,驗(yàn)證實(shí)驗(yàn)臺精度,兩種熔融鹽的密度測量結(jié)果與文獻(xiàn)中的密度進(jìn)行比較。
密度實(shí)驗(yàn)臺精度驗(yàn)證如圖2所示。密度實(shí)驗(yàn)臺測得NaNO_3、KNO_3的密度與參考文獻(xiàn)上給出的密度值變化趨于一致,并且最大偏差值低于0.12%,考慮到文獻(xiàn)值存在的誤差,本實(shí)驗(yàn)臺的密度測量精度滿足實(shí)驗(yàn)要求。
密度實(shí)驗(yàn)臺精度驗(yàn)證如圖2所示。
2.1.2表面張力實(shí)驗(yàn)臺精度驗(yàn)證
采用拉筒法測量納米熔鹽液體表面張力前,可通過測量已知液體的表面張力,通過式(4)對表面張力實(shí)驗(yàn)臺的儀器系數(shù)進(jìn)行標(biāo)定。
本實(shí)驗(yàn)先對NaNO3的表面張力進(jìn)行測量,得到儀器系數(shù)C。由式(4)可知,儀器系數(shù)C與溫度無關(guān),對NaNO3在5個(gè)溫度工況點(diǎn)下的表面張力進(jìn)行測量,并且每個(gè)溫度工況點(diǎn)采集3次測實(shí)驗(yàn)數(shù)據(jù),通過最終的計(jì)算得到本實(shí)驗(yàn)臺的儀器系數(shù)C=0.00053。對KNO和solar salt的表面張力進(jìn)行測量后,與文獻(xiàn)值進(jìn)行對比,如圖3所示。
圖3表明本實(shí)驗(yàn)臺對熔融鹽的表面張力測量結(jié)果與文獻(xiàn)值隨溫度變化的趨勢趨于一致,最大偏差值低于4.0%,考慮到文獻(xiàn)值存在的誤差,本實(shí)驗(yàn)臺的表面張力測量精度滿足實(shí)驗(yàn)要求。
圖3表明本實(shí)驗(yàn)臺對熔融鹽的表面張力測量結(jié)果與文獻(xiàn)值隨溫度變化的趨勢趨于一致。
2.2納米熔鹽密度分析
研究表明,在solar salt中加入SiO_2納米顆粒后,熔點(diǎn)會有一定程度的下降,分解溫度會有一定程度的提高。并且solar salt的熔點(diǎn)為218.2℃,所以當(dāng)熔鹽加熱到250℃時(shí),已經(jīng)完全熔化;當(dāng)熔鹽溫度超過600℃時(shí),熔鹽會開始分解。溫度較高和溫度較低都會對實(shí)驗(yàn)測量的數(shù)據(jù)產(chǎn)生影響,造成較大的實(shí)驗(yàn)誤差。因此基鹽及納米熔鹽密度實(shí)驗(yàn)數(shù)據(jù)測定范圍為260~500℃。
利用阿基米德法對基鹽及5種加入30 nm SiO2納米顆粒的納米熔鹽的密度進(jìn)行測量,每隔10℃進(jìn)行一次測量,對得到的實(shí)驗(yàn)數(shù)據(jù)進(jìn)行整理和分析,擬合公式以及擬合系數(shù)見表2。樣品的密度隨溫度變化如圖4所示。
實(shí)驗(yàn)發(fā)現(xiàn),在溫度測量范圍內(nèi),基鹽的密度在1.7720~1.9389 g/cm3,密度隨溫度的升高呈直線下降趨勢。1#納米熔鹽的密度在1.7722~1.9405 g/cm3,對數(shù)據(jù)進(jìn)行擬合后,擬合系數(shù)在0.9994以上,擬合程度較好。2#納米熔鹽的密度在1.7720~1.9356 g/cm3,密度隨溫度變化的趨勢和基鹽及一般熔鹽密度的變化趨勢保持一致,均隨溫度的升高呈下降趨勢。3#和4#納米熔鹽的密度在1.7721~1.9404 g/cm3和1.7749~1.9352 g/cm3之間,擬合系數(shù)都在0.9995以上,其中4#納米熔鹽的擬合系數(shù)最大,擬合程度最好。5#納米熔鹽的密度在1.7758~1.9384 g/cm3之間,隨溫度升高呈下降趨勢。
樣品的密度隨溫度變化如圖4所示。
如圖4所示,基鹽及納米熔鹽的密度均隨溫度的升高呈直線下降趨勢,且5種納米熔鹽的密度與基鹽的密度基本保持一致。如圖5所示,在不同溫度工況點(diǎn)下,5種納米熔鹽的密度和基鹽的密度均處在同一水平線上,即同一溫度工況點(diǎn)下,納米熔鹽和基鹽的密度保持一致。由于SiO2納米顆粒的密度為2.20g/cm3,與solar salt的密度相差不大,且在solar salt中加入的SiO2納米顆粒較少,因此SiO2納米顆粒對solar salt的密度影響可忽略不計(jì)。
在不同溫度工況點(diǎn)下,5種納米熔鹽的密度和基鹽的密度均處在同一水平線上。
根據(jù)混合物密度計(jì)算公式對納米熔鹽的密度進(jìn)行計(jì)算后,與實(shí)驗(yàn)測量得到的密度進(jìn)行對比,如圖6所示。圖6中,1#納米熔鹽密度的測量值與計(jì)算值的最大偏差與最小偏差分別為0.104%和0.008%;2#納米熔鹽密度的測量值與計(jì)算值的最大偏差為0.327%,最小偏差為0.074%;3#納米熔鹽密度的測量值與計(jì)算值的最大偏差為0.350%,最小偏差為0.007%;4#納米熔鹽密度的測量值與計(jì)算值的最大偏差為0.291%,最小偏差為0.007%;5#納米熔鹽密度的測量值與計(jì)算值的最大偏差為0.302%,最小偏差為0.030%。對比后發(fā)現(xiàn),采用阿基米德法測量的密度值與采用混合物密度計(jì)算公式計(jì)算的密度值相差較小,可認(rèn)為在solar salt中加入SiO2納米顆粒后,熔融鹽的密度不會發(fā)生改變。
根據(jù)混合物密度計(jì)算公式對納米熔鹽的密度進(jìn)行計(jì)算后,與實(shí)驗(yàn)測量得到的密度進(jìn)行對比。
文獻(xiàn)中提出,在熔融鹽中加入SiO2納米顆粒后,由于分子間作用力和納米熔鹽配制過程中的攪拌作用,熔融鹽和納米顆粒在熔鹽體系中會形成一種納米云核。納米云核中納米顆粒被大量的熔融鹽包裹,此時(shí)SiO2納米顆粒的密度對納米云核的密度影響可以忽略不計(jì),納米云核的密度始終與基鹽的密度保持一致。